Duality for location problems with unbounded unit balls
نویسندگان
چکیده
Given an optimization problem with a composite of a convex and componentwise increasing function with a convex vector function as objective function, by means of the conjugacy approach based on the perturbation theory, we determine a dual to it. Necessary and sufficient optimality conditions are derived using strong duality. Furthermore, as special case of this problem, we consider a location problem, where the ”distances” are measured by gauges of closed convex sets. We prove that the geometric characterization of the set of optimal solutions for this location problem given by Hinojosa and Puerto in a recently published paper can be obtained via the presented dual problem. Finally, the Weber and the minmax location problems with gauges are given as applications.
منابع مشابه
Single facility location problems with unbounded unit balls
In this paper we consider a new class of continuous location problems where the ''distances'' are measured by gauges of closed (not necessarily bounded) convex sets. These distance functions do not satisfy the definiteness property and therefore they can be used to model those situations where there exist zero-distance regions. We prove a geometrical characterization of these measures of distan...
متن کاملOn the Complexity of Some Geometric Problems in Unbounded Dimension
This paper examines the complexity of several geometric problems due to un bounded dimension The problems considered are i minimum cover of points by unit cubes ii minimum cover of points by unit balls and iii minimum number of lines to hit a set of balls Each of these problems is proven not to have a poly nomial approximation scheme unless P NP Speci c lower bounds on the error ratios attainab...
متن کاملBest approximation by closed unit balls
We obtain a sucint and nesessery theoreoms simple for compactness andweakly compactness of the best approximate sets by closed unit balls. Also weconsider relations Kadec-Klee property and shur property with this objects.These theorems are extend of papers mohebi and Narayana.
متن کاملDistributive lattices with strong endomorphism kernel property as direct sums
Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem 2.8}). We shall determine the structure of special elements (which are introduced after Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...
متن کاملDuality for vector equilibrium problems with constraints
In the paper, we study duality for vector equilibrium problems using a concept of generalized convexity in dealing with the quasi-relative interior. Then, their applications to optimality conditions for quasi-relative efficient solutions are obtained. Our results are extensions of several existing ones in the literature when the ordering cones in both the objective space and the constr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- European Journal of Operational Research
دوره 179 شماره
صفحات -
تاریخ انتشار 2007